- Data management challenges and cognitive biases are the top barriers to marketing analytics’ influence
- One-third of respondents reported that decision makers cherry-pick data to try to tell a story that aligns with their preconceived decision or opinion
“CMOs often believe that achieving marketing data integration goals will lead to greater influence and increased value of marketing analytics,” said Joseph Enever, Sr. Director Analyst in the Gartner Marketing practice. “The reality is that better data won’t increase marketing analytics’ decision influence alone. CMOs must address the real challenges — cognitive biases and the need for a data-informed culture.”
The survey found that the quantity of marketing decisions that analytics influences does matter: Organizations that report marketing analytics influence fewer than 50% of decisions are more likely to agree that they are unable to prove the value of marketing. Once marketing analytics teams cross that 50% threshold, there are likely diminishing returns to striving to increase the quantity of decisions influenced.
“By 2023, Gartner expects 60% of CMOs will slash the size of their marketing analytics department in half because of failed promised improvements,” said Enever.
Top Barriers to Marketing Analytics’ Influence: Data Quality Challenges and Cognitive Biases
Consumers of marketing analytics continue to cite evergreen data management challenges as the top reason analytics are not used when making decisions. The challenges of “data are inconsistent across sources” and “data are difficult to access” rose to the top in this year’s survey.
Marketing organizations regularly respond to these challenges by integrating more data or acquiring different technology seen as a fix-all approach to marketing data management — yet they fail to realize tangible impacts on key outcomes. For example, marketers experience diminishing marginal returns on data integration when pursuing a 360-degree view of the customer.
Barriers to the use of marketing analytics in decision making are not always caused by data integration challenges unique to marketing — rather, much of this boils down to people and/or process problems.
For instance, key cognitive biases are at the root of marketing analytics’ influence plateau. One-third of respondents reported that decision makers cherry-pick data to try to tell a story that aligns with their preconceived decision or opinion.
In addition, roughly a quarter of respondents said that decision makers do not review the information provided by the marketing analytics team (26%), reject their recommendations (24%), or rely on gut instincts to ultimately make their choice (24%).
CMOs must address these challenges by:
- Tracking the decisions that are made based on analytics to provide a current state of view and areas to improve. Identify examples of marketing analytics work that provided actionable recommendations to a marketing campaign or program. Marketing leaders should encourage their team to look for patterns in decision-making habits and to document the types of decisions they influence.
- Combatting cherry-picking. Set KPIs and metrics before launching a new campaign or marketing strategy, not after the data has already started to come in.
- Encouraging senior leaders to set an example. Avoid being a HiPPO (Highest Paid Person’s Opinion) and actually allow data to inform, or change, decisions.
- Establish analytics upskilling programs that account for differing workflows and resource constraints across the marketing organization. Build personas that detail how different employees need to use data in their roles and prioritize training sessions that best enable participants to learn the skills they need to perform their job.